Panchromatic Satellite Image Classification for Flood Hazard Assessment
نویسندگان
چکیده
The study aims to investigate the use of panchromatic (PAN) satellite image data for flood hazard assessment with an aid of various digital image processing techniques. Two SPOT PAN satellite images covering part of the Nile River in Egypt were used to delineate the flood extent during the years 1997 and 1998 (before and after a high flood). Three classification techniques, including the contextual classifier, maximum likelihood classifier and minimum distance classifier, were applied to the following: 1) the original PAN image data, 2) the original PAN image data and grey-level co-occurrence matrix texture created from the PAN data, and 3) the enhanced PAN image data using an edgesharpening filter. The classification results were assessed with reference to the results derived from manual digitization and random checkpoints. Generally, the results showed improvement of the calculation of flood area when an edge-sharpening filter was used. In addition, the maximum likelihood classifier yielded the best classification accuracy (up to 97%) compared to the other two classifiers. The research demonstrates the benefits of using PAN satellite imagery as a potential data source for flood hazard assessment.
منابع مشابه
Flood Hazard Assessment Using Panchromatic Satellite Imagery
Panchromatic (PAN) satellite imagery has been used successfully in different applications such as topographic mapping and terrain modelling. Nevertheless, PAN imagery is still one of the less used digital sources for land-change studies except few processes where the high-resolution of the PAN images is used to improve the visualization quality of the multi-spectral images. This research aimed ...
متن کاملFlood Hazard Mapping by Satellite Images and Srtm Dem in the Vu Gia – Thu Bon Alluvial Plain, Central Vietnam
The objective of this study is to generate a flood hazard map based on geomorphologic approach employing Shuttle Radar Topographic Mission (SRTM) DEM and satellite image data (ASTER and LANDSAT). Supervised classification of satellite images is implemented to characterize land cover types. Moreover, the Modified Normalized Difference Water Index (MNDWI) is undertaken to identify moist surface o...
متن کاملFusion of Panchromatic and Multispectral Images Using Non Subsampled Contourlet Transform and FFT Based Spectral Histogram (RESEARCH NOTE)
Image fusion is a method for obtaining a highly informative image by merging the relative information of an object obtained from two or more image sources of the same scene. The satellite cameras give a single band panchromatic (PAN) image with high spatial information and multispectral (MS) image with more spectral information. The problem exists today is either PAN or MS image is available fr...
متن کاملKohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کاملA segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment
Various regions in Europe have suffered from severe flooding over the last decennium. Earth observation techniques can contribute toward more accurate flood hazard modelling and they can be used to assess damage to residential properties, infrastructure and agricultural crops. For this study, detailed land cover maps were created by using IKONOS-2 high spatial resolution satellite imagery. The ...
متن کامل